Halaman

Kamis, 23 Mei 2013


APLIKASI FISIKA MODERN DALAM BIDANG ELEKTRONIKA



Fisika modern merupakan cabang ilmu yang penting dalam peradaban manusian. Banyak aplikasi yang merupakan penerapan dari konsep fisika modern telah terealisasi dan membantu kenyamanan hidup manusia. Banyak orang yang beranggapan bahwa Fisika hanya sekedar ilmu biasa yang hanya mempelajari ilmu alam tanpa ada penerapannya. Terutama masih banyak orang yang beranggapan bahwa Fisika hanya mempelajari rumus. Dan tak sedikit yang  tidak menyadari bahwa banyak peristiwa bahkan hal-hal yang sangat dekat dengan kita melibatkan ilmu Fisika. Bahkan Fisika merupakan ilmu dasar yang sangat dibutuhkan oleh cabang ilmu-ilmu lain. Mengapa Fisika sangat penting dalam kehidupan kita? Tentu karena banyak peristiwa dalam kehidupan kita yang melibatkan ilmu Fisika baik kita sadari maupun tan.pa kita sadari. Semakin kita memahami Fisika kita akan mengetahui bahwa Fisika mempunyai cakupan yang luas. Berikut adalah contoh aplikasi ilmu Fisika dalam kehidupan sehari-hari.

v  Aplikasi Gerak Lurus Beraturan Gerak  Lurus Beraturan (GLB) merupakan gerak yang memiliki kecepatan yang konstan. Walaupun GLB sulitditemukan dalam kehidupan sehari-hari, karena biasanya kecepatan gerak benda selalu berubah-ubah. Misalnya ketika dirimu mengendarai sepeda motor atau mobil, laju mobil pasti selalu berubah-ubah. Ketika ada kendaraan di depan, pasti kecepatan kendaraan akan segera dikurangi. Hal ini agar kita tidak tabrakan dengan pengendara lain, terutama jika kondisi jalan yang ramai. Lain lagi jika kondisi jalan yang tikungan dan rusak.

*      Contoh pertama, kendaraan yang melewati jalan tol. Walaupun terdapat tikungan pada jalan tol, kendaraan beroda bisa melakukan GLB pada jalan tol hal ini jika lintasan tol lurus. Kendaraan yang bergerak pada jalan tol juga kadang mempunyai kecepatan yang tetap.

*      Contoh kedua, gerakan kereta api atau kereta listrik di atas rel. Lintasan rel kereta kadang lurus, walaupun jaraknya hanya beberapa kilometer. Kereta api melakukan GLB ketika bergerak di atas lintasan rel yang lurus tersebut dengan laju tetap.

*      Contoh ketiga, kapal laut yang menyeberangi lautan atau samudera. Ketika melewati laut lepas, kapal laut biasanya bergerak pada lintasan yang lurus dengan kecepatan tetap. Ketika hendak tiba di pelabuhan tujuan, biasanya kapal baru mengubah haluan dan mengurangi kecepatannya.

*      Contoh keempat, gerakan pesawat terbang. Pesawat terbang juga biasa melakukan GLB. Setelah lepas landas, pesawat terbang biasanya bergerak pada lintasan lurus dengan dengan laju tetap. Walaupun demikian, pesawat juga mengubah arah geraknya ketika hendak tiba di bandara tujuan.

v  Aplikasi GLBB dalam kehidupan sehari-hari. GLBB merupakan gerak lurus berubah beraturan. Berubah beraturan maksudnya kecepatan gerak benda bertambah secara teratur atau berkurang secara teratur. Perubahan kecepatan tersebut dinamakan percepatan. Secara awam sangat r menemukan benda yang melakukan gerak lurus berubah beraturan. Pada kasus kendaraan beroda misalnya, ketika mulai bergerak dari keadaan diam, pengendara biasanya menekan pedal gas (mobil dkk) atau menarik pedal gas (motor dkk). Pedal gas tersebut biasanya tidak ditekan atau ditarik dengan teratur sehingga walaupun kendaraan kelihatannya mulai bergerak dengan percepatan tertentu, besar percepatannya tidak tetap alias selalu berubah-ubah. Contoh GLBB dalam kehidupan sehari-hari pada gerak horisontal alias mendatar nyaris tidak ada.
Contoh GLBB yang selalu kita jumpai dalam kehidupan hanya gerak jatuh bebas. Pada gerak umit menemukan aplikasi GLBB dalam kehidupan sehari-hari.jatuh bebas, yang bekerja hanya percepatan gravitasi dan besar percepatan gravitasi bernilai tetap. Tapi dengan penerapa ilmu fisika, GLBB dapat ditemukan dalam kegiatan kita sehari-hari. Contohnya buah mangga yang lezat atau buah kelapa yang jatuh dari pohonnya.Jika kita pernah jatuh dari atap rumah tanpa sadar kita juga melakukan GLBB.

v  Aplikasi gerak vertikal dalam kehidupan sehari-hari : Gerak vertikal terdiri dari dua jenis, yakni gerak vertikal ke atas dan gerak vertikal ke bawah. Benda melakukan gerak vertikal ke atas atau ke bawah jika lintasan gerak benda lurus. Kalau lintasan miring, gerakan benda tersebut termasuk gerak parabola. Aplikasi gerak vertikal dalam kehidupan sehari-hari misalnya ketika kita melempar sesuatu tegak lurus ke bawah (permukaan tanah), ini termasuk gerak vertikal.

v  Aplikasi gelombang elektromagnetik: Saat ini hampir semua orang memiliki peralatan yang satu ini. Dia begitu kecil yang bisa dengan nyaman diletakkan di dalam saku, namun dianggap memiliki fungsi yang sangat besar terutama untuk berkomunikasi. Benda itu adalah sebuah ponsel (telepon seluler). Saat ini ponsel tidak hanya digunakan untuk menelpon saja tetapi juga untuk fungsi lain seperti mengirim dan menerima pesan singkat (sms), mendengarkan musik, atau mengambil foto. Bagaimana perangkat ponsel dapat terhubung dengan perangkat ponsel yang lain padahal mereka saling berjauhan? Konsep yang bisa menjelaskan fenomena ini adalah konsep gelombang elektromagnetik. Konsep gelombang elektromagnetik ternyata sangat luas tidak hanya berkaitan dengan TV atau ponsel saja, melainkan banyak aplikasi lain yang bisa sering kita temukan sehari-hari di sekitar kita. Aplikasi tersebut meliputi microwave, radio, radar, atau sinar-x. Selain itu karya Röntgen yang mengantarkan dirinya mendapatkan hadiah nobel fisika pada 1901 ini akan menjadi sebuah alat yang sangat berguna sekali dalam kedokteran. Sinar-X itulah sebuah fenomena yang ditemukan oleh Roentgen pada laboratoriumnya. Sebuah fenomena yang kemudian menjadi awal pencitraan medis (medical imaging) pertama, tangan kiri istrinya menjadi uji coba eksperimen penemuan ini. Inilah menjadi titik awal penggunaan pencitraan medis untuk mengetahui struktur jaringan manusia tanpa melalui pembedahan terlebih dahulu. Penemuan ini juga menjadi titik awal perkembangan fisika medis di dunia, yang menkonsentrasikan aplikasi ilmu fisika dalam bidang kedokteran. Eksperimen Röntgen terhadap tangan istrinya, menjadi inspirasi produksi alat yang dapat membantu dokter dalam diagnosa terhadap pasien, dengan mengetahui citra tubuh manusia. Citra atau gambar yang dihasilkan dari sinar-X ini sifatnya adalah membuat gambar 2 dimensi dari organ tubuh yang dicitrakan dengan memanfatkan konsep atenuasi berkas radiasi pada saat berinterakasi dengan materi. Gambar atau citra objek yang diinginkan kemudian direkam dalam media yang kemudian dikenal sebagai film. Dari Gambar yang diproduksi di film inilah informasi medis dapat digali sesuai dengan kebutuhan klinis yang akan dianalisis.

Setelah puluhan tahun sinar-X ini mendominasi dunia kedokteran, terdapat kelemahan yaitu objek organ tubuh kita 3 dimensi dipetakan dalam gambar 2 dimensi. Sehingga akan terjadi saling tumpah tindih stukur yang dipetakan, secara klinis informasi yang direkam di film dapat terdistorsi. Inilah tantangan berikutnya bagi fisikawan untuk berkreasi. Tahun 1971, seorang fisikwan bernama Hounsfield memperkenalkan sebuah hasil invensinya yang dikenal dengan Computerized Tomography atau yang lazim dikenal dengan nama CT Scan. Invensi Hounsfield ini menjawab tantangan kelemahan citra sinar-X konvensional yaitu CT dapat dapat mencitrakan objek dalam 3 Dimensi yang tersusun atas irisan-irisan gambar (tomography) yang dihasilkan dari perhitungan algoritma(bahasa program) komputer. Karya Hounsfield ini menjadi revolusi besar-besaraan dalam dunia pencitraan medis atau kedokteran yang merupakan rangkaian yang berkaitan. Citra/gambar hasil CT dapat menujukan struktur tubuh kita secara 3 dimensi, sehingga secara medis dapat dijadikan sebagai sebuah alat bantu untuk penegakkan diagnosa yang dibutuhkan. Untuk mengabadikan penemunya dalam CT terdapat bilangan CT atau Hounsfield Unit (HU), namun penemuan ini juga meruapakan jasa Radon dan Cormack.

Tahun 1990an, lahir kembali sebuah perangkat yang dikenal dengan nama Magnetic Resonance Imaging. Perangkat ini invensi yang tidak kalah hebatnya dengan CT, karena menggunakan sistem fisika yang berbeda. MRI istilah kerennya menggunakan pemanfaatan aktivitas fisis spin tubuh manusia pada saat berada dalam medan magnet yang kuat dan kemudian dengan sistem gangguan gelombang radio yang sama dengan frekuensi Larmor, menghasilkan sebuah sinyal listrik. Sinyal inilah yang dikenal dengan Free Induction Decay yang kemudian dievaluasi dengan Transformasi Fourier menjadi citra 3 Dimensi. Invensi ini juga sangat fenomenal, karena terobosan baru yang tidak menggunakan radiasi pengion seperti CT dan sinar Roentgen untuk dapat menghasilkan sebuah citra dengan resolusi yang yang sangat baik dalam mencitrakan stuktur tubuh manusia khususnya organ kepala. Inventor MRI mendapat ganjaran hadiah nobel bidang fisologi dan kedokteran tahun 2003.

Inilah sekelumit peranan fisika yang yang sangat revlusioner mengubah dunia kedokteran menjadi modern. Tanpa lahirnya sinar-X, CT, dan MR bagaimana kita dapat mengetahui posisi kelainan yang ada ditubuh kita bagian dalam atau kanker? Dengan karya fisikawan, insiyur, ahli komputer munculah sebuah teknologi yang digunakan untuk penegakkan diagnosa. Banyak teknologi lain yang dikembangkan oleh para fisikawan dan ilmuwan lain untuk kedokteran seperti halnya ultrasonografi, linear accelerator untuk radioterapi, dan juga CT dan USG 4 Dimensi.
Aplikasi energi(nuklir) dalam kehidupan sehari-hari: Teknologi dan teknik penggunaan nuklir dapat memberikan manfaat dan kontribusi yang besar untuk pembangunan ekonomi dan kesejahteraan rakyat. Misalnya, nuklir dapat digunakan di bidang pertanian, seperti pemuliaan tanaman Sorgum dan Gandum dengan melalui metode induksi mutasi dengan sinar Gamma.

Di bidang kedokteran, teknik nuklir memberikan kontribusi yang tidak kalah besar, yaitu, terapi three dimensional conformal radiotherapy (3D-CRT), yang dapat mengembangkan metode pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya. Dengan teknik ini, kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi, bahkan tanpa merusak jaringan lainnya. Di bidang energi, nuklir dapat berperan sebagai penghasil energi Pembangkit Listrik Tenaga Nuklir (PLTN). PLTN dapat menghasilkan energi yang lebih besar dibandingkan pembangkit
Aplikasi hukum Newton: Hukum  1 newton : sebuah benda mempertahankan kedudukannya.
contoh : jika kita dalam sebuah mobil saat mobil itu tiba2 maju badan kita tba2 terdorong ke belakang Hukum  2 newton : kita berada dalam lift hukum 3 newton : ini merupakan gaya aksi = reaksi contoh : saat kita menekan papan tulis (aksi) maka papan tulis memberikan reaksi , bila aksi lebih besar dari pada reaksi maka papan tulis akan rusak dan sebaliknya Marilah para ilmuwan bangsaku, berlombalah berkreasi. Minimalnya untuk kemandirian kita akan teknologi untuk melayani kebutuhan bangsa sendiri. Fisikawan Indonesia teruslah berkarya.

Salah satu contoh aplikasi penting dari penerapan fisika modern adalah penemuan Laser (light amplification by stimulated emission of radiation). Laser adalah aplikasi dari Teori Bohr yang memodelkan lintasan diskrit dari elektron. Cahaya laser terbentuk melalui emisi radiasi elektromagnetik saat elektron berpindah dari suatu tingkat energi ke tingkat energi lain. Laser dipakai dalam berbagai bidang seperti kesehatan, industri, militer, telekomunikasi, hiburan, dan lainnya. LASIK merupakan salah satu aplikasi laser yang banyak dipakai dalam dunia kesehatan untuk mengkoreksi lensa mata manusia. Dalam dunia komersial, laser juga telah mempercepat antrian pembayaran di kasir-kasir supermarket karena dapat dipakai untuk membaca kode barang (barcode). Dalam industri, energi besar dari laser dipakai untuk memotong baja dan kepentingan lainnya. Dalam telekomunikasi, laser dipakai sebagai pembawa data melalui serat optik. Kapasitas dan kecepatan transmisi data dengan menggunakan serat optik menjadi sangat besar karena medium pembawa data berupa cahaya yang memiliki kecepatan sangat besar. Kemajuan ini telah membuat kenyamanan pada manusia karena biaya komunikasi menjadi lebih murah dan kualitasnya menjadi lebih baik. Laser juga dipakai sebagai sumber cahaya pada mikroskop yang dikenal sebagai mikroskop laser. Daya resolusi mikroskop laser sangat tinggi sehingga mampu mengamati benda yang sangat kecil. Contoh lain aplikasi laser adalah dalam displai dan holografi. Sifat dualisme partikel gelombang memungkin penggunaan elektron sebagai pengganti cahaya dalam mikroskop elektron. Penggunaan elektron sebagai sumber tersebut telah meningkatkan daya resolusi mikroskop dari orde mikron menjadi angstrom. Peningkatan kemampuan mikroskop yang drastis tersebut memungkinkan kita untuk mengamati benda-benda dalam ukuran nanometer seperti sel darah merah, protein dan lainlainnya. Penemuan tersebut secara tidak langsung telah mendukung perkembangan dunia kesehatan, khususnya ilmu kedokteran. Penyimpanan data secara optik (optical storage) dengan menggunakan laserdisc, CD dan DVD juga merupakan penerapan dari laser. Kemampuan ‘writing’ dari laser yang sangat presisi memungkinkan peningkatan kapasitas dari MegaBits (MB) menjadi GigaBits (GB), bahkan TeraBits (TB).

Contoh aplikasi lain dari kajian fisika modern adalah penerapan teori relativitas, khususnya dinamika relativitas khusus yang memperlihatkan kesetaraan antara massa dan energi. Konsep kesetaraan antara massa dan energi ini diterapkan dalam teknologi nuklir. Teknologi nuklir dapat menghasilkan energi nuklir melalui reaksi fusi dan reaksi fisi. Apabila teknologinya dikuasai, energi nuklir memberikan banyak keuntungan bagi manusia. Energi nuklir menawarkan alternatif yang menarik sebagai pengganti bahan bakar konvensional seperti batubara dan minyak bumi. Efisiensi energi nuklir jauh lebih besar dibandingkan dengan efisiensi batubara dan minyak bumi.

Efek rumah kaca (green house effect) yang merupakan gejala pemanasan global adalah penerapan dari sifat radiasi benda hitam yang merupakan gejala dari fisika kuantum yang juga merupakan bagian dari fisika modern.



             APLIKASI GELOMBANG  DALAM BIDANG ELEKTRONIKA


Kemajuan teknologi saat ini semakin meningkat berikut dalam penggunaan gelombang elekromagnetik dalam kehidupan sehari-hari.
Seperti apakah gelombang elektromagnetik, apa contoh gelombang elektromagnetik itu? Gelombang elektromagnetik sebenarnya selalu ada disekitar kita, salah satu contohnya adalah sinar matahari, gelombang ini tidak memerlukan medium perantara dalam perambatannya. Contoh lain adalah gelombang radio. Tetapi spektrum gelombang elektromagnetik masih terdiri dari berbagai jenis gelombang lainnya, yang dibedakan berdasarkan frekuensi atau panjang gelombangnya. Untuk itu disini kita akan mempelajari tentang rentang spektrum gelombang elektromagnetik, karakteristik khusus masing-masing gelombang elektromagnetik di dalam spectrum dan contoh dan penerapan masing-masing gelombang elektromagnetik dalam kehidupan sehari-hari.

  
GELOMBANG ELEKTROMAGNETIK

Gelombang Elektromagnetik adalah gelombang yang dapat merambat  walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.
Ciri-ciri gelombang elektromagnetik :
Dari uraian tersebut diatas dapat disimpulkan beberapa ciri gelombang elektromagnetik adalah sebagai berikut:
ü  Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.
ü  Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.
ü  Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.
ü  Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.
ü  Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.
Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.
 SUMBER GELOMBANG ELEKTROMAGNETIK
ü  Osilasi listrik.
ü  Sinar matahari ® menghasilkan sinar infra merah.
ü  Lampu merkuri ® menghasilkan ultra violet.
ü  Penembakan elektron dalam tabung hampa pada keping logam ® menghasilkan sinar X (digunakan untuk rontgen).
Inti atom yang tidak stabil  menghasilkan sinar gamma.
SPEKTRUM GELOMBANG ELEKTROMAGNETIK
Susunan semua bentuk gelombang elektromagnetik berdasarkan panjang gelombang dan frekuensinya disebut spektrum elektromagnetik. Gambar spectrum elektromagnetik di bawah disusun berdasarkan panjang gelombang (diukur dalam satuan _m) mencakup kisaran energi yang sangat rendah, dengan panjang gelombang tinggi dan frekuensi rendah, seperti gelombang radio sampai ke energi yang sangat tinggi, dengan panjang gelombang rendah dan frekuensi tinggi seperti radiasi X-ray dan Gamma Ray.
Contoh spektrum elektromagnetik

Gelombang Radio
Gelombang radio dikelompokkan menurut panjang gelombang atau frekuensinya. Jika panjang gelombang tinggi, maka pasti frekuensinya rendah atau sebaliknya. Frekuensi gelombang radio mulai dari 30 kHz ke atas dan dikelompokkan berdasarkan lebar frekuensinya. Gelombang radio dihasilkan oleh muatan-muatan listrik yang dipercepat melalui kawat-kawat penghantar. Muatan-muatan ini dibangkitkan oleh rangkaian elektronika yang disebut osilator. Gelombang radio ini dipancarkan dari antena dan diterima oleh antena pula. Kamu tidak dapat mendengar radio secara langsung, tetapi penerima radio akan mengubah terlebih dahulu energi gelombang menjadi energi bunyi.
  
Gelombang mikro
Gelombang mikro (mikrowaves) adalah gelombang radio dengan frekuensi paling tinggi yaitu diatas 3 GHz. Jika gelombang mikro diserap oleh sebuah benda, maka akan muncul efek pemanasan pada benda itu. Jika makanan menyerap radiasi gelombang mikro, maka makanan menjadi panas dalam selang waktu yang sangat singkat. Proses inilah yang dimanfaatkan dalam microwave oven untuk memasak makanan dengan cepat dan ekonomis.
Gelombang mikro juga dimanfaatkan pada pesawat RADAR (Radio Detection and Ranging) RADAR berarti mencari dan menentukan jejak sebuah benda dengan menggunakan gelombang mikro. Pesawat radar memanfaatkan sifat pemantulan gelombang mikro. Karena cepat rambat glombang elektromagnetik c = 3 X 108 m/s, maka dengan mengamati selang waktu antara pemancaran dengan penerimaan.

Sinar Inframerah
Sinar inframerah meliputi daerah frekuensi 1011Hz sampai 1014 Hz atau daerah panjang gelombang 10-4 cm sampai 10-1 cm. jika kamu memeriksa spektrum yang dihasilkan oleh sebuah lampu pijar dengan detektor yang dihubungkan pada miliampermeter, maka jarum ampermeter sedikit diatas ujung spektrum merah. Sinar yang tidak dilihat tetapi dapat dideteksi di atas spektrum merah itu disebut radiasi inframerah.
Sinar infamerah dihasilkan oleh elektron dalam molekul-molekul yang bergetar karena benda diipanaskan. Jadi setiap benda panas pasti memancarkan sinar inframerah. Jumlah sinar inframerah yang dipancarkan bergantung pada suhu dan warna benda. 

Cahaya tampak
Cahaya tampak sebagai radiasi elektromagnetik yang paling dikenal oleh kita dapat didefinisikan sebagai bagian dari spektrum gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Panjang gelombang tampak nervariasi tergantung warnanya mulai dari panjang gelombang kira-kira 4 x 10-7 m untuk cahaya violet (ungu) sampai 7x 10-7 m untuk cahaya merah. Kegunaan cahaya salah satunya adlah penggunaan laser dalam serat optik pada bidang telekomunikasi dan kedokteran.

Sinar ultraviolet 
Sinar ultraviolet mempunyai frekuensi dalam daerah 1015 Hz sampai 1016 Hz atau dalam daerah panjang gelombagn 10-8 m 10-7 m. gelombang ini dihasilkan oleh atom dan molekul dalam nyala listrik. Matahari adalah sumber utama yang memancarkan sinar ultraviolet dipermukaan bumi,lapisan ozon yang ada dalam lapisan atas atmosferlah yang berfungsi menyerap sinar ultraviolet dan meneruskan sinar ultraviolet yang tidak membahayakan kehidupan makluk hidup di bumi.

Sinar X 
Sinar X mempunyai frekuensi antara 10 Hz sampai 10 Hz . panjang gelombangnya sangat pendek yaitu 10 cm sampai 10 cm. meskipun seperti itu tapi sinar X mempunyai daya tembus kuat, dapat menembus buku tebal, kayu tebal beberapa sentimeter dan pelat aluminium setebal 1 cm.    



Sinar Gamma
Sinar gamma mempunyai frekuensi antara 10 Hz sampai 10 Hz atau panjang gelombang antara 10 cm sampai 10 cm. Daya tembus paling besar, yang menyebabkan efek yang serius jika diserap oleh jaringan tubuh. 

Contoh penerapan gelombang elektromagnetik dalam kehidupan sehari-hari :
*      Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.
*      Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan. 
*      Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.

*      Ultraviolet

Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.

*      Sinar X

Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.
   

Dari pembahasan di atas, dapat disimpulkan bahwa begitu besar peranan gelombang elektromagnetik yang bermanfaat dalam kehidupan kita sehari-hari, tanpa kita sadari keberadaannya.
Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan :
    * Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz
    * Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1µeV/GHz
    * Panjang gelombang dikalikan dengan energy per foton adalah 1.24 µeVm
Spektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi. Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (? = 0,5 mm). Istilah “spektrum optik” juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 – 700 nm)[1].
Dan beberapa contoh spektrum elektromagnetik seperti :
Radar
(Radio Detection And Ranging),digunakan sebagai pemancar dan penerima gelombang.
Infra Merah
Dihasilkan dari getaran atom dalam bahan dan dimanfaatkan untuk mempelajari struktur molekul.
Sinar tampak
mempunyai panjang gelombang 3990 Aº – 7800 Aº.
Ultra ungu
dimanfaatkan untuk pengenalan unsur suatu bahan dengan teknik spektroskopi.



APLIKASI OPTIK DALAM BIDANG ELEKTRONIKA

Salah satu bidang rekayasa yang dikembangkan oleh Departemen Teknik Fisika di Institut Teknologi Bandung (ITB) adalah rekayasa laser dan optika. Terapan dari bidang rekayasa yang satu ini sudah begitu menyentuh kehidupan sehari-hari, sehingga kadang masyarakat umum tidak begitu sadar akan keberadaannya.
Pernahkah memerhatikan sistem laser pada cakram padat (compact disc), yang umum dijumpai di perangkat komputer? Sistem laser berfungsi untuk membaca (dan merekam) informasi pada permukaan cakram padat tersebut. Sebagai contoh terapan lainnya, jika menggunakan jaringan internet untuk mengunjungi sebuah situs di luar negeri, maka informasi yang diterima tersebut telah disalurkan melalui jaringan serat optik. Sistem laser dan jaringan serat optik tersebut hanya dua dari sekian banyak terapan rekayasa laser dan optika yang bermanfaat bagi manusia. Secara umum, penerapan bidang rekayasa ini dapat dibagi menjadi empat cabang besar yaitu Optika Instrumentasi, Sistem Pencitraan, Sistem Tampilan dan Pencahayaan, serta Sistem Teknologi Informasi. 
Optika Instrumentasi
Tujuan dari optika instrumentasi adalah untuk mengukur, mendeteksi atau memantau suatu fenomena alam. Salah satu contoh penerapannya adalah dengan dikembangkannya sistem pendeteksian tingkat polusi air dan udara di perkotaan. Dengan memanfaatkan sifat fisika laser dan optika, jumlah polutan dapat diketahui dan sumbernya pun dapat dideteksi.
Teknik yang hampir serupa juga dapat dimanfaatkan untuk pemantauan sumber daya alam di lautan lepas. Sebagai contoh, sistem sensor optik telah digunakan di perairan Indonesia untuk memonitor perkembangbiakan algae yang bisa merusak keseimbangan ekosistem setempat.
Kalangan industri yang harus menghasilkan produknya dalam jumlah besar secara efisien, juga diuntungkan oleh optika instrumentasi. Kualitas produk dapat dipantau secara cepat dan relatif mudah. Tidak kurang dari produsen mobil dan keperluan rumah tangga telah memanfaatkannya. Bahkan, teh petik pun dapat dipantau kualitasnya dengan sistem optika infra merah untuk memastikan bahwa standar mutu ekspor internasional telah dicapai. 
Sistem Pencitraan
Cabang kedua dari terapan rekayasa laser dan optika adalah sistem pencitraan. Tujuan utamanya adalah untuk menangkap citra dari sebuah objek dan menampilkannya untuk keperluan lebih lanjut. Masyarakat luas mungkin paling mengenalnya dalam bentuk pencitraan di bidang biomedik. Dalam melakukan diagnosa, seringkali para ahli medis mengandalkan informasi dari sistem pencitraan optika berupa data foto Rontgen.
Contoh terapan lainnya adalah di atas meja operasi. Pada teknik operasi yang mutakhir, ahli medis hanya membuat sayatan yang sekecil mungkin. Ini dilakukan agar pemulihan pasien dapat berlangsung lebih cepat. Alat bedah, maupun sistem pencitraan yang memandu sang ahli medis, harus dimasukkan melalui celah yang sangat kecil itu. Ketepatan pencitraan sangat dibutuhkan agar operasi berjalan baik dan lancar.
Penerapan sistem pencitraan untuk keperluan lainnya pun sangat banyak. Contoh lain yang sangat penting adalah sistem deteksi di bandar udara atau tempat penting lainnya. Dengan memanfaatkan gelombang optika yang di kalangan ilmiah sering disebut sebagai gelombang Terahertz (dengan frekuensi 10 hingga 1000 kali lebih pendek daripada frekuensi gelombang cahaya biasa), maka sistem pencitraan dapat mendeteksi benda-benda berbahaya yang tersembunyi di balik plastik, kayu, kain, kertas dan bahan lainnya.
Pencitraan dengan objek berskala sangat kecil pun tak kalah pentingnya. Sistem mikroskopi yang mutakhir dapat menangkap citra dari objek-objek yang begitu kecilnya, sehingga sistem pencitraan ini akan berperan besar dalam bidang nanoteknologi yang sedang berkembang pesat secara global.
Tak ketinggalan adalah penerapan sistem pencitraan dengan objek yang berskala sangat besar. Sistem teleskop yang memantau benda-benda angkasa sangat membantu berkembangnya ilmu astronomi dan fisika. Teleskop Hubble yang beroperasi di angkasa luar telah dapat menangkap banyak citra yang menakjubkan, sesuatu hal yang nyaris mustahil dilakukan dengan teleskop di muka bumi, akibat turbulensi atmosfer di atas bumi.  
Sistem Tampilan dan Pencahayaan
Penerapan lain dari rekayasa laser dan optika adalah untuk keperluan tampilan (display) dan pencahayaan (lighting). Sistem tampilan yang terus berkembang dapat dilihat pada perubahan tampilan televisi. Tabung kaca yang berbentuk besar dan cembung kini mulai tergantikan oleh layar yang begitu tipis dan datar. Kemajuan sistem tampilan ini juga telah dimanfaatkan untuk meningkatkan kenyamanan pengguna telepon genggam dan alat elektronik lainnya.
Sedangkan terapan pada sistem pencahayaan terkait erat dengan bidang rekayasa Fisika Bangunan. Secara umum, sistem pencahayaan ini dioptimalkan demi kenyamanan manusia. Misalnya, sistem pencahayaan yang khusus telah diterapkan di meja operasi agar para ahli medis mendapatkan cahaya yang cukup terang tanpa pasien harus menderita akibat panasnya sumber cahaya. Terapan lain dari sistem pencahayaan ini juga bisa ditemui di ruang kantor, di galeri pameran, atau bahkan di dalam interior sebuah mobil. 
Sistem Teknologi Informasi
Cabang terapan yang terakhir adalah pada sistem teknologi informasi. Terapan jenis ini akan bertambah penting di masa depan, di saat informasi menjadi kebutuhan yang semakin signifikan bagi manusia. Dua buah contoh terapannya telah diuraikan sebelumnya, yaitu penggunaan jaringan serat optik untuk telekomunikasi, serta penyimpanan informasi pada permukaan sebuah cakram padat.
Dengan berkembangnya teknologi rekayasa optika, bukan tidak mungkin suatu saat nanti proses perhitungan di dalam sebuah komputer tidak lagi dilakukan secara elektronik, melainkan secara optik. Jika ini berhasil diwujudkan, kecepatan perhitungan akan meningkat berlipat-lipat dan manusia dapat memanfaatkannya untuk banyak hal.
Secara historis maupun akademis, pendidikan rekayasa laser dan optika di ITB terkait dengan pendidikan serupa di institusi Technische Universiteit Delft (TU Delft) di Belanda. Bahkan Profesor Handojo pun mengenyam pendidikan pascasarjana di institusi ini. Di TU Delft, pengajaran dan penelitian bidang rekayasa ini dilakukan di bawah grup Optica.
Berikutnya mengasah kreativitas. Terbatasnya fasilitas penunjang penelitian di Indonesia tidak boleh menghalangi lahirnya penelitian yang berkualitas. Ini dipaparkan Profesor Handojo, dalam salah satu makalahnya yang disampaikan di Konferensi Internasional Terapan Laser dan Optoelektronika (ICOLA) pada akhir tahun 2002 lalu.
Kompetensi dan kreativitas tersebut dapat menghasilkan kemampuan rekayasa yang unggul. Terlebih lagi, jika ceruk (niche) terapan yang spesifik ala Indonesia dapat dengan jeli ditemukan. Beberapa contohnya adalah ide pemanfaatan optika instrumentasi untuk pemantauan kualitas teh petik atau untuk pendeteksian kualitas perairan yang sangat berkaitan dengan kondisi alam khas Indonesia. Pemanfaatan rekayasa laser dan optika yang spesifik tersebut akan menghasilkan jalur pendidikan rekayasa yang tepat guna dan tidak dapat disamai oleh pendidikan sejenis di negara lainnya.
Rekayasa laser dan optika juga mulai diterapkan di dalam kendaraan. Menggunakan bentuk jaringan serat optik yang umum disebut jaringan 'MOST', maka 'mobile-phone', radio, sistem pengeras suara, komputer, serta sistem cakram padat dapat terhubung dan dikendalikan secara bersamaan.